
A Network Pump
�

Myong H. Kang

Ira S. Moskowitz, Member IEEE

Daniel C. Lee, Member IEEE

Naval Research Laboratory

Washington, D.C. 20375y

Abstract

A designer of reliable multi-level secure (MLS) networks must consider covert

channels and denial of service attacks in addition to traditional network perfor-

mance measures such as throughput, fairness, and reliability. In this paper we

show how to extend the NRL data Pump to a certain MLS network architecture

in order to balance the requirements of congestion control, fairness, good perfor-

mance, and reliability against those of minimal threats from covert channels and

denial of service attacks. We back up our claims with simulation results.

1 Introduction

A multi-level secure (MLS) system stores and processes information of di�erent sensi-

tivity levels in a secure manner. By this we mean that access is controlled so that no

high level information is allowed to pass to lower level users/processes (Low) but lower

level information is available to higher level users/processes (High) [3].

�This is a revised version of \A Network Version of the Pump" which appeared in the Proc. of the

1995 IEEE Symposium on Security and Privacy, pp. 144-154, Oakland, CA
yRespective addresses of the authors are (mail code 5540, mail code 5540, mail code 8140) Naval Re-

search Laboratory, Washington, D.C. 20375. Respective e-mail addresses are mkang@itd.nrl.navy.mil,

moskowitz@itd.nrl.navy.mil, lee@kingcrab.nrl.navy.mil

1

Thus, an MLS system allows Low to send messages to High, but High should not be

able to send messages to Low. On the other hand, acknowledgements (ACK) to Low

that High has received its messages are necessary for reliability and performance. This

is especially true for distributed systems in which the communication channels may not

always be reliable. High, however, can manipulate the times that ACKs arrive in order

to covertly send unauthorized messages to Low. Therefore we see that MLS security is

in conict with the need for functionality.

The Pump, developed at NRL [6, 7], solves the dilemma of simultaneously assuring

reliability, performance and security when there is only one Low and one High. We will

refer to this as the basic Pump. The basic Pump allows High to send ACKs to Low

indirectly through an intermediary communication bu�er. Further, the basic Pump

requires that Low receive the ACKs at probabilistic time intervals. This probabilistic

ACK is based upon past High activity.

Since computer systems are becoming more open and interconnected, denial of ser-

vice problems are receiving more attention [21]. Hence, security devices such as the

Pump should also provide protection against such attacks.

This paper addresses how to adapt the basic Pump for use in a network environment,

where we have multiple Lows and multiple Highs. We will refer to this as the \network

Pump." As we move from a dedicated data network to the Broadband Integrated Service

Digital Network (B-ISDN) such as the Asynchronous Transfer Mode (ATM) Network

[9], the issues of congestion control, fairness, and reliability become extremely important

and extremely complicated. The network community itself has not worked all of these

issues out yet. Our problem is even more complex because we are coupling security (i.e.,

covert channels [10] and denial of service) with the above.

1.1 Assumptions and Terminology

The network environment that is considered is shown in �gure 1. Each Low (High) is at

the same low (high) level. Possible implementations of the network Pump are a packet

switch between workstations, a router connecting local area network segments, etc.

There are many Lows (Li) and Highs (Hj), and they are untrusted processes, thus

they may contain Trojan Horses (malicious software). The network Pump is a trusted

process (assured to be free of malicious software) which mediates tra�c from Lows to

Highs. Each message that will be routed from a Low to a High has a message number

2

L1

L I

H1

HJ

link1

linkI

link1

link J

Network

Pump
I Low inputs J High outputs

Figure 1: The Pump in a network environment.

(ID), and input and output addresses associated with it. For simplicity, we assume that

all messages have the same length. We do not consider multicasting in this paper. We

further assume that Lows (Highs) do not communicate among themselves to simplify

the covert channel analysis.

A session is a connection between any Low and any High. In �gure 1 there are I�J

distinct sessions. During each sessionij , a message leaves Li, travels over linki, goes into

the network Pump, and after processing leaves the network Pump over linkj, and arrives

at Hj. We assume that all propagation delays are zero for conceptual simplicity1. The

minimal processing time of the network Pump is a �xed overhead value Ov, which is

small enough so that the network Pump itself never becomes a performance bottleneck.

The demand (input) rate �ij is the rate demanded by Li destined for Hj. Each Hj

behaves as a server with service rate �ij. This is the inverse of the mean time of service

by Hj for messages from Li.

1.2 Objectives

Most network resources are dynamically shared for e�ciency reasons. If this dynamic

sharing is not carefully controlled, then ine�ciency and delays occur [4]. The main

functions of congestion control in a network are:

� To prevent inputs from sending messages faster than the outputs can handle them.

� To prevent throughput degradation and loss of e�ciency from overloading the

network.

� To prevent unfair allocation of network resources from competing inputs.

1This assumption is true for the basic Pump also. It can be easily relaxed in both cases.

3

Since the network Pump is a shared resource among many sessions, it should provide

the congestion control mechanism. Let us discuss the speci�c objectives required of the

network Pump.

Reliability / Handshaking

The reliability requirement can be simply stated as no loss of messages and no dupli-

cation of messages. To satisfy this requirement ACKs and message numbers (ID) are

necessary. The network Pump has a reliability protocol that works as follows:

If a Low has not received ACK by time out after sending a message, it will

retransmit the same message. If a High receives the same message then it

will keep only one copy.

Further, a Low does not send the next message to a speci�c High until its previous

message to that High has been ACKed (handshake protocol).

Performance

We desire good performance. The network Pump's control over the time of sending the

ACKs to a Low can be utilized for congestion control. The network Pump is designed

to exercise congestion control. The network Pump controls the rates into itself, the

realized (input) rates, by slaving Low's message transmission to the average rates out

(service rates) of the network Pump. It does so by moderating the ACK rate to a Low,

since this Low will not send a new message until it receives an ACK from the previous

message from the same session (the handshake protocol).

If the service rates are greater than the demand rates, then the network Pump should

not hurt performance. If service rates or output capacities are less than the demand

rates, then the outputs cannot handle their inputs. Therefore, the network Pump by

slowing the demand rate to the realized rate, alleviates congestion, and at the worst,

does not lessen total throughput.

4

Routing
with
fairness
criterion

Infinite link capacity Limited Link capacity

λ1

λ2

λ3

λ∗
1

λ∗
2

λ∗
3

Demand Rate Realized Rate

Figure 2: fairness

Fairness

Bandwidth of communication links, transmission speed, and processing speed are all

limited. Therefore, if the load of data tra�c o�ered to the network Pump exceeds its

capability, some of the load must be cut. The load must be cut fairly for all the sessions

that share the network Pump. The idea is shown in �gure 2 where the illustrated

output limitation is due to limited output link capacity. Note, in denial of service

attacks (discussed later), the limitation is usually due to decrease in the High service

rate.

Fairness can be de�ned in di�erent ways. One fairness policy is max-min fairness.

This policy says all sessions should get bandwidth according to the following criterion

| the smallest realized rate is as large as possible and, given this, the second-smallest

realized rate is as large as possible, etc.[5]. For example, if there are three sessions whose

demand rates (units of messages per unit time) are 0.4, 0.5, 0.6 and the output capacity

equals 1, then all three sessions will have realized rates of 1/3, 1/3, 1/3 under max-min

fairness. If one session demands less than what it can get, the leftover bandwidth will

be equally shared among the rest of the sessions. For example, if there are three sessions

whose demand rates are 0.2, 0.5, 0.6 and the output capacity equals 1 then those sessions

will have realized rates 0.2, 0.4, 0.4, respectively under max-min fairness.

The advantages of this policy are (1) there is a simple way to implement this policy

(i.e., round-robin scheduling [5]) and (2) the scheduling scheme does not need to know

the demand rates of sessions which may not always be known. Since this policy gives

preference to sessions that have lower demand rate, it does not allow a session to take

the entire bandwidth if there is more than one session. One disadvantage of this policy

is that a heavily demanded session is penalized more than a lightly demanded session

(i.e., not sensitive to demand rates).

5

There are other fairness policies, such as the proportional policy [20]. This policy

allocates bandwidth in proportion to each input demand rate. The network community

does not have a \best" fairness policy. The network Pump uses max-min fairness because

of the above advantages.

Covert Channels

It is well known that the ACK stream that is required to satisfy the reliability require-

ment introduces covert communication channels. This was the motivation for developing

the basic Pump over the conventional store and forward bu�er type of communication.

We will show in section 3.2, using results from [6, 7], that the capacity of the covert

channels can be made negligible.

Denial of Service

We interpret the denial of service attack in a broad sense in the network environment:

If a session cannot achieve its intended throughput due to the misbehavior

of other sessions then the session is under a denial of service attack.

Since the network Pump is a shared resource among several sessions, services for

other sessions can be potentially disrupted if too much resource is allocated to one

particular session. The design of the network Pump should prevent such a situation.

2 Background | The Basic Pump

In the basic Pump our concern is sending messages from (one) Low to (one) High. In

[6, 7, 19], we reviewed why traditional communication protocols (including read-down

and blind write-up) cannot satisfy the needs for reliability, performance, and security

simultaneously. As a solution, the basic Pump was introduced as shown in �gure 3.

The basic Pump [6] places a bu�er (size n) between Low and High, and gives ACKs

at probabilistic times to Low based upon a moving average (MA) of the past m High

6

. . .

n
messages messages

ACK

Pump

Low High
ACK

MA

buffer

Figure 3: The Basic Pump

ACK times. A High ACK time is the time from when the bu�er sends a message to

High to the time when the bu�er receives High's ACK. Thus, basing Low ACK times

upon past High activity has the double bene�t of (1) keeping the bu�er from �lling up

and (2) having a minimal negative impact upon performance. The Low ACK time is the

time from when Low sends a message to the basic Pump to the time when Low receives

the basic Pump's ACK. The Low ACK time is a slightly modi�ed exponential random

variable [7] with mean equal to MA. Intuitively, the modi�cation is (1) a truncation of

the exponential density at a design parameter time out and (2) a shift by an amount

of time equal to the minimum processing time (Tr) of a message if there is space on the

bu�er. When Low must wait for space on the bu�er, the above holds, except the shift is

equal to Tr = max(wait time for space, minimumprocessing time). Thus, the Low ACK

time is a random variable that takes values between Tr and time out. (In [7] we have

slightly modi�ed this over the �rst exposition of the basic Pump [6] to introduce extra

noise. However, for the network Pump we stay with the simpler formulation due to

the extra noise from multiple users and a modi�ed ACK scheme (see section 3.2 covert

channel analysis)).

At present, an implementation of the basic Pump is running on a XTS-300 platform

[14]. Early results, along with the simulation results of Kang and Moskowitz [7], show

a proof of concept for the basic Pump. Based upon this and the need for a secure

network congestion mediator we feel the extension to the network environment is proper.

Presently, a prototype network Pump is being built in hardware as a guard by NRL's

Center for High Assurance Computer Systems [22].

3 An Architecture of the Network Pump

The architecture of a network Pump is shown in �gure 4.

Each component of the network Pump works as follows:

7

...J

...J

...

...buffer iJ

buffer i1

Receiver1

Receiver I

THPJ

THP1

L1

L I

H1

HJ

link1
link1

linkJ

linkI

T

L

P

scheduling

scheduling

Figure 4: A logical view of the network Pump.

Lows and Highs (Exterior to the network Pump)

Lows (Highs) is the set of inputs (outputs) to the network Pump. Lows (Highs)

consists of I (J) processes non-communicating among themselves. Each Low,

Li, can strive to send messages to any High, Hj, with various demand rates as

discussed before. Since Li is outside of the network Pump we assume the Li has

some procedure for sending messages over linki, the only constraint being that

the demand rates are �ij, such that
P

j �ij � capacity of linki. Consider sessionij
| After Li sends a message to Hj, it waits for the ACK to that message from

the network Pump. Once this ACK arrives, Li can send another message to Hj.

Therefore, each Low can only send a new message in each session after it has

received the ACK of the previous message from the network Pump (handshake

protocol). When Hj receives a message from the network Pump it sends an ACK

back after the appropriate service time to the network Pump.

Receivers

There is a receiveri for each Li. In receiveri, there are J slots; slotj stores a

messages from sessionij until it is routed by the TLP.

Trusted Low Process (TLP)

The TLP takes a message from a receiver and routes it to the appropriate output

bu�er. We denote by Tr the time from when a message is sent from a Low to the

time when that message is placed in the appropriate output bu�er. (We will also

refer to Tr as \routing time" in the network Pump.) If there is available space

in the output bu�er, Tr is equal to the overhead Ov. If there is no space, the

message is not placed until there is a space available. Therefore, Tr includes both

Ov and the amount of time the message waits until the output bu�er is available.

8

THPj
linkj

Scheduling

buffer1j

buffer2j

bufferIj

.

...

MA1j

MA2j

MAIj

Figure 5: A closer view of a trusted high process.

After the message is routed to the output bu�er, the TLP is ready to send an

ACK back to the appropriate Li. The time this ACK arrives at Li depends on the

randomization scheme, but is always at least Tr.

Output Bu�ers

There are I logical output bu�ers for Hj, each denoted as bu�erij . A message from

sessionij will be stored in bu�erij.

Trusted High Processes (THPj)

THPj delivers a message from bu�erij to Hj according to a scheduling scheme.

THPj cannot deliver another message from bu�erij until the prior message from

bu�erij is ACKed (by Hj).

3.1 A Detailed Design

A detailed design rationale is described in this section.

3.1.1 Trusted High Processes

THPj plays an important role in scheduling delivery from output bu�ers to Hj and in

computing moving averages. Figure 5 graphically describes the role of a THPj.

Consider THPj | it has to deliver messages from each bu�erij to Hj. Since the

capacity of linkj is limited by physical considerations and inputs may send more messages

than linkj or Hj can handle, THPj needs some scheduling scheme. This scheduling

scheme determines the fairness among di�erent inputs.

The network Pump uses round-robin scheduling because it is simple and achieves

9

max-min fairness [5]. For example, if THPj has to serve three output bu�ers then an

opportunity to send a message is given in the order of bu�er1j, bu�er2j, bu�er3j , bu�er1j,

... . If bu�er2j does not have any message to send then the opportunity is transferred

to bu�er3j and the next opportunity is given to bu�er1j, and so on.

THPj also maintains and updates moving averages (MA1j, ..., MAIj). The reason

for THPj to maintain I separate moving averages (i.e., one per session) instead of

one combined moving average is that Hj may service messages from di�erent Lows at

di�erent rates. Throughout this paper we assume that the message service time is not

a performance bottleneck in the benign case. In other words, the bottleneck is output

links, not servers, unless the system is under denial of service or covert channel attacks.

Since there is potentially more than one input, the method of computing moving

averages is di�erent from when there is only one input. When there is only one input,

the moving average is computed based on the interval from the time the message is sent

to High, to the time the ACK arrived from High. However, if there is more than one

input, the message is ready to be sent by the Pump, but cannot be sent because the

output link is not available due to the round-robin scheduling. This additional waiting

time must be taken into account or else the input messages will ood the output bu�ers.

Speci�cally, MAij of the network Pump is the moving average of the last m ACK

times from Hj to bu�erij . An ACK time from Hj is the di�erence between when bu�erij
receives ACK from Hj and max(time that message arrived in bu�erij , time that the

previous message from bu�erij was ACKed by Hj). In other words, if bu�erij is not

empty then the previous ACK time by Hj is used to compute the moving average.

However, if bu�erij is empty when a new message arrives then we use the arrival time

instead of the previous ACK time.

3.1.2 Output Bu�ers

The number of messages in bu�erij is important to achieve fairness [5] (the bigger the

number of messages in bu�erij the fairer). This is because our round-robin scheduler

does not take burstiness into account. The way to handle bursts is to have enough

messages queued in bu�erij so that times of abundance and starvation (with respect to

message arrivals) are balanced out. In fact, it is desirable to keep the queue length in

bu�erij positive so that max-min fairness is preserved. However, if the queue length

is too big we have potential covert channel and denial of service problems. Thus, it is

desirable to keep the queue length at a certain level. To address this issue, we introduce

10

Fa i r s i ze

Figure 6: A closer view of bu�erij.

the concept of Fair size, which is a design parameter targeted for the desirable queue

length. Intuitively, the burstier the input, the larger the Fair size must be. Note

that Fair size has to be intelligently chosen so that one session cannot dominate (�ll)

the total output bu�er and at the same time large enough to accommodate burstiness.

Good design requires that the total output bu�er has at least Fair size surplus spaces

in addition to sum of the Fair size spaces allocated for all sessions. Intuitively, if all

sessions are active and behaving, this design leaves us with at least Fair size spaces in

the total output bu�er. Figure 6 pictorially shows bu�erij where the number of messages

in the bu�er uctuates around the Fair size.

Since the network Pump has a built-in mechanism to share output bu�ers fairly

among di�erent sessions (i.e., moving average construction to control input rates which

will be discussed in section 3.1.3), all output bu�ers are dynamically shared among

di�erent sessions.

3.1.3 Trusted Low Process

When routing requests arrive from receivers, the TLP routes messages to the proper

output bu�ers and reads the current moving average value. Once the message is deliv-

ered, the TLP is ready to send an ACK. However, this ACK will be delayed depending

on the moving average of the session and the randomization scheme. The network Pump

uses a similar randomization scheme as the basic Pump whose details are presented in

[6, 7]. As described in section 2, the TLP of the basic Pump delays ACKs based on

a modi�ed exponential random distribution whose mean is the moving average of the

session. This ACK rate controls the input rates, through the handshake protocol, if the

demand rate is higher than the ACK rate.

As we discussed in section 3.1.2, we wish to make sure that the number of messages

11

in an output bu�er uctuates around the Fair size. To achieve this, we modify the

ACK scheme from the basic Pump. The way the basic Pump controls the ACK time to

Low can be written as follows:

ACK time =

(
Tr if MA� Tr � 0

min(Tr + �fr[MA� Tr] ; time out) otherwise

where Tr is the same as in section 2, and �fr[MA�Tr] is a draw from a random distribution

as also described in section 2. (Note that there is only one session in the basic Pump.)

Recall that Tr is the time between when the a message is sent from Low to when the

message is placed in the output bu�er. Hence, a random delay is included in the ACK

time in addition to Tr if MA� Tr > 0. A detailed description can be found in [7].

We now describe the way the network Pump controls ACK times to Li for a message

in each session. Let fr(x) be a draw from the exponential distribution with mean x.

De�ne

Q � fr(MAij � Tr) + k � (N � Fair size)

where N is the number of messages in bu�erij at the time the message is placed in

bu�erij, and k � (N�Fair size) is a feedback term. Both k and Fair size can be chosen

by a system designer. Note that the moving average of the ACK times from Hj to the

network Pump is computed separately for each session. For sessionij , the ACK time to

Low for each message is:

ACK time =

(
Tr if MAij � Tr � 0 or Q � 0

min(Tr +Q; time out) otherwise.

We now elaborate the rationale of the extra term k � (N � Fair size) in Q. As long

as Li has messages to send to Hj, the network Pump wants to keep bu�erij nonempty.

The reason is to prevent missing the round-robin turn, and thus to give each session

throughput close to max-min fairness. Therefore, when the number of messages in

bu�erij is less than the Fair size, the network Pump reduces its ACK time to Li in

order to accelerate the input rate, as seen in the extra term. On the other hand, if

bu�erij is often full, we have covert channel problems (see section 3.2). Hence, the

network Pump decreases the input rate by increasing the ACK time to Li when the

number of messages in bu�erij is larger than the Fair size.

In the simulation that is described in section 4, we choose k = MAij=(Fair size)

(see section 4 for the discussion of how the Fair size was chosen for the simulation).

Thus

12

Q = fr(MAij � Tr) +MAij(
N

Fair size
� 1).

Therefore, we have

avg(ACK time) � Tr + avg(Q) =MAij(
avg(N)

Fair size
).

Note that avg(N) is close to the Fair size due to the second term of Q. Thus we have

avg(ACK time) �MAij.

3.1.4 Receivers

Receivers receive messages from Lows and request routing to the TLP. Each receiver

contains J slots (size one bu�ers) so that the inputs from one session do not interfere

with inputs from other sessions. Messages in the slots will either be routed or discarded

after time out (if there is no output bu�er available).

3.2 Design Review

In this section, we review the design of the network Pump and explain how the objectives

in section 1.2 are satis�ed. We back our claims on performance, fairness, and denial of

service by the simulation results presented in section 4.

Reliability

Due to the reliability protocol requirement that was speci�ed in section 1.2 (i.e., ACK,

retransmission of the same message after time out, and message ID), the network Pump

provides as much reliability as TCP. Also, the High ACK of the Pump can be realized as

an ACK of an application layer protocol to provide reliability at the application layer.

There are some secure system protocols which do not use acknowledgements, but they

are not reliable [19, 2].

Performance

The network Pump does not hurt performance (throughput). Consider the following

two cases where output link capacities are not a bottleneck:

13

� Demand rate is faster than the service rate: The network Pump's ACK rate,

which is tied to the moving average of the server will slow down input to match

the servers. However, this will not degrade performance because the throughput

will be determined by the service rate which is the performance bottleneck.

� Demand rate is slower than the service rate: The network Pump's ACK rate will

not slow down the input rate in this case. Hence, there is no e�ect on performance.

If the output link capacities are a bottleneck, the network Pump's max-min fairness

criteria and the moving average construction assures us that performance is not penalized

(section 3.1.1). Hence, the network Pump does not a�ect the throughput unless the

network Pump itself is the bottleneck.

Fairness

The network Pump uses a round-robin scheduling scheme which achieves max-min fair-

ness at each THPj if all inputs can accumulate enough messages at output bu�ers. The

network Pump's modi�ed moving average construction that was described in section

3.1.3 encourages all inputs to send as many messages as possible up to the Fair size.

Hence, the network Pump strives to achieve max-min fairness.

Covert Channel Analysis

A major reason that the network Pump uses a randomized ACK stream, aside from fair

congestion control is to minimize the threat of covert communication from a High to a

Low. Ideally, a secure computer system does not allow a communication channel from

a high level user/process to a low level user/process [10]. However, in reality, unless

we want a non-responsive or non-reliable system, such covert channels are a fact of life.

Given that, one must try to �nd ways to minimize illicit information leakage from such

covert channels. The covert channels that concern us in this paper are timing channels

[12, 15, 24] | these are covert channels where the output symbols are distinguished by

their di�erent time values.

The speci�c timing channels that concern us have been discussed in detail in other

papers [6, 7, 13, 16], so we present only a brief review here. Let us start o� with a

simple scenario: a single low (Low) and a single high (High) with a store and forward

14

bu�er (SAFB) between them. Low sends a message to the SAFB. When this message is

stored in the SAFB, the SAFB sends an ACK back to Low and then Low can send its

next message to the SAFB. The SAFB attempts to send the message to High and when

High has successfully received the message from the SAFB, High sends an ACK to the

SAFB and the message is removed from the SAFB. For obvious reliability concerns, we

do not allow Low to write over messages in the SAFB before they have been read out

by High. Therefore, when the bu�er is full it stops receiving messages from Low. This

opens up what is referred to as the full bu�er channel (FBC) between High and Low.

High, by intentionally slowing or stopping its receiving of messages from the SAFB, can

cause the SAFB to become full. Then High can remove messages to allow space to open

up on the SAFB and for Low to again receive an ACK from the SAFB and send new

messages. Therefore, High can manipulate the timing of the ACK stream to Low from

the SAFB. Let us do a worst-case information theoretic analysis of the FBC to see how

much information can actually be leaked from High to Low and hence how insecure our

system may be.

The FBC is a timing channel. To exploit the FBC it is assumed that Trojan horses

(malicious software in both Low and High) are in the computer system. The Trojan

horses control when Low sends a message and when High sends an ACK back to the

SAFB.

� A Trojan horse �lls the SAFB by (High) not removing messages from the SAFB.

� Now that the SAFB is full, a noiseless timing channel exists between High and

Low. Furthermore, this noiseless channel exists as long as the SAFB is full.

� Now Low sends a message to the SAFB. The SAFB cannot send an ACK back to

Low until a spot opens up on the SAFB. If High happens to remove a message as

soon as (or before) Low sends a message, then Low only waits an overhead time

Ov for an ACK. We assume that High, by removing messages from a full SAFB,

can a�ect the ACK time to Low in increments of i�; i = 0; 1; 2; : : :. Assuming

Trojan horses know the size of the SAFB (i.e., n) and how fast the Trojan horse

can send a message, High knows that Low has �lled the SAFB and has just sent a

new message to the SAFB. If Low gets an ACK at time Ov+i�, Low interprets the

signal as the (i+ 1)st symbol. Since every time Low receives an ACK, the SAFB

is full again, and Low can then send its new message | High can noiselessly send

symbols again.

15

With this example we are looking at a worst-case scenario. High will try to send

symbols as quickly as possible, hence the time values of Ov + i�. Of course this al-

lows unbounded response times. Real systems have timeouts and we assume that the

timeouts in question are very large in comparison to Ov � �, so that examining a com-

munication channel with i bounded changes the analysis very little from assuming that

i is unbounded. The time units of our system are such that � is an integer, i.e., � is an

integer number of system clock ticks (either reading from a system real-time clock or

instruction counts from a tight loop). The channel capacity [23] of this channel is given

by

C = lim sup
k!1

logN(k)

k
bits per clock tick

where the logarithms are base two and N(k) is the number of distinct sequences of

symbols (ACK times) that take a total of time k. It can be shown [23, 12, 13, 16] that

C = log!, where ! is the positive root of 1� (x�Ov + x��). The polynomial arises from

the limiting behavior of the recurrence relation

N(k) = N(k �Ov) +N(k � (Ov + �)) +N(k � (Ov + 2�)) + � � � :

De�ne q by Ov

�
= q. Note that q need not be an integer. By changing variables and

letting y = x� we see that !� is the positive root of 1� (y�q + y�1). Unfortunately, the

only closed form solution for such polynomials [13] involve special functions. For certain

special cases such as q = 1 we can obtain the trivial closed form solution that C = 1=�.

Similarly for q = 2, we have C = ��1 log 1+
p
5

2
.

The basic Pump, which deals with a single Low and a single High, was designed to

minimize the threat of the FBC by modifying the SAFB by using probabilistic ACK

times. The probabilistic arrival times of the ACKs introduce noise into the timing

channel. Also, the basic Pump prevents the bu�er from becoming/staying full. These

two e�ects, the noise and the fact that the bu�er is hardly ever full, severely diminish

the channel capacity of various exploitations of the FBC. Bounds on the actual covert

exploitation of the basic Pump are given by capacity reduction formulas in [6] and

more precisely in [7]. In brief, a relationship between the bu�er size n and the moving

average parameter, m, was given with respect to the desired percent reduction of the

covert channel capacity. Hence, either analytically or numerically, we have a way to

measure the maximal information leakage from High to Low in the basic Pump. We

will show that these reductions also hold for covert channel exploitations of the network

Pump.

16

In the network Pump, our Trojan horse scenario is that one particular Hj and one

particular Li are in cahoots via cooperating Trojan horses (recall that we are looking

at the situation where the Lows (Highs) do not communicate among themselves) |

thus we again have the potential for the FBC. However, the fact that there are other

users of the network Pump means that noise is introduced into the FBC which does

not occur in the case of one Low and one High. Thus, the covert channel analysis from

the basic Pump still holds for the network Pump as a worst-case scenario (we can very

conservatively replace the bu�er size of the basic Pump, n, by the Fair size in the

capacity reduction formulas [7]). This is because in the network Pump, instead of just

attempting to keep the total bu�er from become full, we attempt to keep the total bu�er

around (the number of active sessions � Fair size). Hence, for a misbehaving session to

�ll the total bu�er, and thus exploit the FBC, it requires that session to �ll the unused

total bu�er spaces which are at least Fair size in number (see section 3.1.2). Therefore,

we can use the capacity reduction formulas from [7], where there is one Low and one High

as an upper bound. These reduction formulas tell us how to choose the Fair size and

the moving average parameter, m, to ensure that any covert channel capacity is within

a speci�ed bound. This bound becomes even more conservative as I and J increase due

to the increasing noise of multiple users being on the system. Therefore, given values of

Ov and �, we can choose a Fair size and moving average parameter, m, to reduce the

potential covert channel capacity to within a speci�ed value.

In the basic Pump there is a statistical channel [17] from High to Low, when the

bu�er is not full, caused by Low attempting to correlate the ACK times to High's actions.

As the number of terms making up the moving average grows, this correlation decreases,

and hence the channel capacity decreases. The same holds as well for the network Pump

and again the multiple users introduce spurious noise which further serves to confound

any meaningful interpretation of the ACK times. Also, the Fair size further frustrates

correlation attempts by Li. Therefore, the bounds from the basic Pump again hold.

Finally, the network Pump (as well as the basic Pump) is sensitive to the small

message criterion [18]. By this we mean even if one has a channel with small, or even

zero, capacity it might still be possible to send small, possibly noisy, messages relatively

quickly. The network Pump, because of its bu�er management and randomization

scheme, is designed to thwart an attempt at sending meaningful short messages, see [7,

section 4] for details.

17

Denial of Service

In the network environment denial of service can occur in the following two cases:

1. A server slows down.

2. An input sends messages faster than the rate that the intended server can handle

them.

In these cases, the shared resources will be monopolized by this speci�c session so that

other sessions cannot use required resources.

The above cases will not happen if the network Pump mediates between the Lows

and Highs because the network Pump monitors the servers' activities and tracks service

rates. The service rate will be reected in the ACK rate to Li through the moving

average construction. Due to the network Pump's handshake protocol and moving

average construction, inputs (Lows) cannot send any more than the servers (Highs) can

handle.

4 Simulation Results

To substantiate our claims on performance, fairness and denial of service, simulation

experiments have been conducted.

4.1 Simulation Set Up

In our simulation scenario, there are three Lows (L1; L2; L3) and three Highs (H1;H2;H3);

hence 9 sessions. The capacities of all input and output links are 1.0. All demanded in-

puts have Poisson arrival distributions. Demand rates from L1 are �11 = 0:5; �12 = 0:3,

�13 = 0:2, the demand rates from L2 are �21 = 0:4; �22 = 0:4, �23 = 0:2, and the demand

rates from L3 are �31 = 0:4; �32 = 0:5, �33 = 0:1 (see �gure 7).

All Highs have 2-Erlang distributed service rates. The 2-Erlang distribution is often

used to model the time to complete a task [8]. For the benign case all service rates are

set to 2.0 (to demonstrate the output links being the bottlenecks, any value greater than

18

L1

L2

L3 H3

1.0

1.0

H1

1.0

H2

1.0

1.01.0

0.5
0.3
0.2

0.4
0.4
0.2

0.4
0.5
0.1

0.5

0.4

0.4

0.4

0.3

0.5

0.2
0.2

0.1

µi1 = 2.0

µi3 = 2.0

µi2 = 2.0 for benign case
µi2 = 0.1 for denial of service

Figure 7: The simulation scenario.

1.0 would su�ce). For denial of service simulation, service rates are �i1 = 2:0, �i2 = 0:1,

and �i3 = 2:0 for i = 1, 2, 3.

The performance and fairness of the following two systems and the \ideal" case are

compared under di�erent total output bu�er sizes.

� The network Pump as described in section 3. The last 30 High ACK times are

used to compute the moving average (i.e., m = 30) and the Fair size per session

was set to 1

10
of the total output bu�er size. Note that there are 9 sessions in our

scenario.

� The Nonpump. This is the same as the network Pump (still has the handshake

protocol) except that it does not have the moving average or probabilistic con-

struction. (Thus, output bu�er space is allocated to each session on a �rst come

�rst served basis.) In other words, ACKs will be sent to Lows as soon as the

message is routed. Hence, demand rates will be forcibly adjusted to the realized

rate only when there are no available output bu�ers. The purpose of this system

is to demonstrate the importance of congestion control.

� The ideal case is where the max-min fairness rates are achieved over the output

links. The max-min rates for H1 are (1/3, 1/3, 1/3), for H2 they are (0.3, 0.35,

0.35), and for H3 they are (0.2, 0.2, 0.1). Hence, these are the ideal versions to

which we compare the network Pump and the Nonpump.

19

4.2 Simulation Results in the Benign Case

In the benign case (i.e., inputs and outputs behave | no Trojan horses are present),

there is not much of a performance di�erence between the network Pump and the Non-

pump even though the network Pump performs slightly better than the Nonpump. This

slight performance di�erence comes from the congestion control mechanism. Since the

Nonpump has little congestion control, some inputs still send more messages than the

intended server can handle. This causes an unfair sharing of resources and degrades

performance. This e�ect will be magni�ed under the denial of service attack. Figures 8,

9, and 10 show the performance and fairness among sessions that send messages to H2.

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 8: Throughput of session12.

Note session12 achieves its demand rate as realized rate (.30). Hence, the jitter in

�gure 8 is from the probabilistic nature of the input rather than any e�ects from routing

devices2. This probabilistic jitter slightly a�ects the throughput of other sessions (�gures

9 and 10).

Figures 9 and 10 also show the e�ect of the scheduler, and the size of the output

bu�er and the Fair size to the fairness and throughput of each session, since 0.4 and 0.5

are both greater than 0.35. As the size of output bu�er grows the throughput approaches

its ideal (fairness) rate.

Even though we do not show the performance of other sessions, the network Pump

performs very well (basically the same as in �gures 11-16).

2The simulator never exactly generates a rate of 0.3, hence the jitter.

20

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 9: Throughput of session22.

4.3 Simulation Results under Denial of Service Attack

To show the e�ect of a denial of service attack, we slow down the service rate (i.e.,

�i2 = 0:1) of one High, namely H2. Figures 11 through 16 show the performance and

fairness comparison between the network Pump and the Nonpump. The performance

of the network Pump is hardly a�ected by the attack. However, the performance of the

Nonpump is greatly a�ected. The main reason for the degradation of performance is

that all output bu�er space is occupied by sessions that send messages to H2 so that

the rest of sessions have to wait a long time to obtain them.

Figures 11, 12, and 13 show the throughputs of sessions to H1.

These �gures (11, 12, and 13) show no jitter of throughput as the total bu�er size

increases. This shows that the probablistic nature of inputs are all hidden because all

input (demand) rates to H1 are greater than its realized rate and messages are always

waiting for their turn at the output bu�er3 (the round-robin scheme takes a message

from each bu�er in turn and does not pass any bu�er because they always have a message

ready to send).

Figures 14, 15, and 16 show the throughputs of di�erent inputs to H3. Again the

jitter of throughput is from the probabilistic nature of inputs rather than the e�ect of

di�erent bu�er sizes.

3For example a uctuation around a rate of 0.5 is not signi�cant when the realized rate is actually

much less than 0.5 .

21

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 10: Throughput of session32.

We do not show throughputs of session12, session22, session32 because under the

denial of service attack all cases have throughput values around 0.033.

22

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 11: Throughput of session11. Note that the Pump and the Ideal curves are

virtually identical.

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 12: Throughput of session21. Note that the Pump and the Ideal curves are

virtually identical.

23

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 13: Throughput of session31. Note that the Pump and the Ideal curves are

virtually identical.

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 14: Throughput of session13.

24

0

0.1

0.2

0.3

0.4

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 15: Throughput of session23.

0

0.1

0.2

0.3

50 100 150 200 250

T
h
r
o
u
g
h
t
p
u
t

(
m
e
s
s
a
g
e
s
/
u
n
i
t

t
i
m
e
)

Total Buffer Size

Pump
Nonpump

Ideal

Figure 16: Throughput of session33.

25

5 Discussion

This paper describes the need for a secure device that can route messages from (multiple)

Lows to (multiple) Highs. Even though abstract composition problems have been well

studied [11], this paper shows that the actual design of such a device is quite complicated.

This secure device should not only meet the requirements of conventional network routers

such as performance, reliability, and fairness, but also the requirements of security, such

as minimal impact from covert channels and denial of service attacks. The network

Pump that we introduced in this paper can balance the above requirements.

It is interesting to note that the network Pump's use of indirect acknowledgements is

similar to ideas put forth in the mobile computing community [1]. Further, the network

Pump's stable storage is along the lines of \packet caching" used in [25].

One of our future plans includes designing and building the network Pump on top of

the ATM layer. We are also investigating extending the network environment described

in this paper to deal with a more general lattice-type security structure. We refer to

this as the \generalized Pump". Note that if we allow Lows (Highs) to conspire then

we must redo our covert channel capacity analysis. We leave this as future work.

Acknowledgement

We wish to thank Ruth Heilizer and the referees for their helpful comments and sugges-

tions.

References

[1] A. Bakre and B. Badrinath. \I-TCP: Indirect TCP for mobile hosts," 15th Int'l

Conf. on Distributed Computing Systems (ICDCS), May 1995.

[2] J. N. Froscher, D. M. Goldschlag, M. H. Kang, C. E. Landwehr, A. P. Moore,

I. S. Moskowitz, and C. N. Payne. \Improving inter-enclave information ow for

a secure strike planning application," Proc. 11th Computer Security Applications

Conference, pp. 89 - 98, New Orleans, LA, Dec. 1995.

[3] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

26

[4] M. Gerla and L. Kleinrock. \Flow Control: A comparative survey," IEEE Trans.

Commun., vol. 28, no. 4 pp. 553 - 574, Apr. 1980.

[5] E. L. Hahne. \Round-robin scheduling for max-min fairness in data networks,"

IEEE J. Select. Areas Commun., vol. 9, no. 7, pp. 1024 - 1039, Sep. 1991.

[6] M. H. Kang and I. S. Moskowitz. \A Pump for rapid, reliable, secure communica-

tion," Proceedings ACM Conf. Computer & Commun. Security '93, pp. 119 - 129,

Fairfax, VA, 1993.

[7] M. H. Kang and I. S. Moskowitz. \A data Pump for communication," Submit-

ted for publication, also available as NRL Memo. Report 5540-95-7771, 1995

(http://www.itd.nrl.mil/ITD/5540/publications/CHACS/index1995.html).

[8] A. M. Law and W. D. Kelton. SimulationModeling & Analysis. McGraw Hill, 1991.

[9] J. Lane. \ATM knits voice, data on any net," IEEE Spectrum, Feb. 1994.

[10] B. W. Lampson, \A note on the con�nement problem," Communications of the

ACM, vol. 16, no. 10, pp. 613 - 615, 1973.

[11] J. D. McLean. \A general theory of composition for a class of \Possibilistic" prop-

erties," IEEE Trans. Software Engineering, vol. 22, no. 1, pp. 53 - 67, 1996.

[12] J. K. Millen. \Finite-state noiseless covert channels." Proceedings of the Computer

Security Foundations Workshop II, pp. 81 - 86, Franconia, NH, 1989.

[13] A. R. Miller and I. S. Moskowitz. \Reduction of a class of Fox-Wright Psi functions

for certain rational parameters," Computers & Mathematics with Applications. vol.

30, no. 11, 1995.

[14] B. E. Montrose and M. H. Kang. \An Implementation of the Pump: Event Driven

Pump," NRL Memo. Report 5540-95-7782, 1995.

[15] I. S. Moskowitz and A.R. Miller. \The channel capacity of a certain noisy timing

channel," IEEE Transactions on Information Theory, Vol. 38, No. 4, pp. 1339-1344,

July 1992.

[16] I. S. Moskowitz and A. R. Miller. \Simple timing channels," Proceedings 1994 IEEE

Computer Society Symposium on Research in Security and Privacy, pp. 56 - 64,

Oakland, CA, 1994.

27

[17] I. S. Moskowitz and M. H. Kang. \Discussion of a statistical channel," Proceedings

IEEE-IMS Workshop on Information Theory and Statistics, p. 95, Alexandria, VA,

1994.

[18] I. S. Moskowitz and M. H. Kang. \Covert channels | Here to stay?," Proceedings

COMPASS '94, pp. 235 - 243, Gaithersburg, MD, 1994.

[19] I. S. Moskowitz and M. H. Kang. \The Modulated-Input Modulated-Output

model," Proceedings IFIP WG 11.3 working conference on database security, Rens-

selaerville, NY, August 1995.

[20] B. Mukherjee and S. Banerjee. \Alternative strategies for improving the fairness in

and an analytical model of DQDB networks," Proceedings IEEE INFOCOM '91,

pp. 879 - 888, 1991.

[21] R. M. Needham. \Denial of service: An example," Communications of the ACM,

vol. 37, no. 11, pp. 42 - 46, 1994.

[22] J. J. Parsonese. \The basics in networking the data Pump," Working paper.

[23] C. Shannon and W. Weaver. The mathematical theory of communication. Univer-

sity of Illinois Press, 1949. Also appeared as a series of papers by Shannon in the

Bell System Technical Journal, July 1948, October 1948 (A Mathematical Theory

of Communication), January 1949 (Communication in the Presence of Noise).

[24] J. C. Wray. \An analysis of covert timing channels," Proceedings 1991 IEEE Com-

puter Society Symposium on Research in Security and Privacy, pp. 2 - 7, Oakland,

CA, 1991.

[25] H. Xu and B. Bhargava. \Reliable stream transmission in mobile computing envi-

ronments," Technical Report CSD 95-002, Computer Science, Purdue University,

1995.

28

